
NOTATION 

R, Rp, Ro, radii of the deformation, ingot, and heating element zones; ~, time; ~, ~o, 
melt viscosity and the viscosity scale when going over to dimensionless variables; x, longi- 
tudinal coordinate; T, To, Tp, temperatures of the melt, the gas being blown through the heat- 
ing zone, and the furnace; Tpl , Tp2 , maximal and minimal heating element temperature; kT, ~e, 
melt and effective coefficient of molecular conductivity which takes account of both the mo- 
lecular and the radiant conduction; 8, reflection coefficient; ep, E, emissivities of the 
heating element and the melt; q, an integration variable; l, heating element length; p, c, 
melt density and specific heat; h, coefficient of external heat elimination; no, refractive 
index of the gas being blown through the heating zone; oo, Stefan--Boltzmann constant; o, co- 
efficient of surface tension; d~, d2, coefficients in the temperature dependence of the vis- 
cosity; a2, a,, geometric dimensions of the heating zone; N, quantity of points along the lon- 
gitudinal coordinate during discretization ~f the design domain; V, VH, Vo, velocities of the 
melt, the ingot delivery, and the drawing. 
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TEMPERATURE-MEASUREMENT OPTIMIZATION AND NUMERICAL INVERSE CONDUCTION- 

TREATMENT SOLUTION 

E. A. Artyukhin, S. A. Budnik, 
and A. S. Okhapkln 

UDC 536.24 

Practical evidence is given that locally optimal measurement planning can be applied 
in nonstatlonary thermophysical experiments. 

Inverse treatments in thermophysics require a preliminary examination of topics in the 
formalization and algorithmization, as well as choice of working conditions to provide high 
accuracy. Simulation results [1]show that the systematic error in solving an inverse treat" 
ment is substantially dependent on the number of sensors used in the measurements and the po- 
sitions of them even if the exact values are known for the measured temperatures. A measure- 
ment scheme exists for which one can determine the unknown behavior oft he thermophyslcalchar- 
acteristics accurately. Measurement plan optimization before the experiments is therefore of 
interest. One can use experiment planning theory [2]. 

Optimum temperature-measurement planning is based on the following. We introduce a mea" 
surement plan 

= {N, X}, X = {x~}f 
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We construct a scalar performance criterion ~($) dependent on the plan ~ and character- 
izing the accuracy in solving the inverse treatment, and then we consider the definition of 
the optimal plan 

~o -- Arg max ~ (~), (i) 

where E is the permissible plan set. 

In (I), one cannot construct a criterion that directly defines the accuracy, and there- 
fore one uses indirect quality criteria; constructive results can be obtained when the un- 
known functions are represented parametrically and the inverse treatment amounts to determin- 
ing the unknown parameters P = {Pk}~. Then the most common indirect criterion is the deter- 
minant for the normalized Fisher information matrix [2]: 

where 

1 F(t)---- --~--{Ok.j}, k ,  ] = 1, m ,  (2) 

N ~m 

/ = I  0 

and 0k(X , T), k = i, m are sensitivity functions, while ~i(T), i = i, N are measurement per- 
formance functions, whichenable one to incorporate the errors in the measurements; ~i(T) = 
c-afor equally accurate measurements, where o -2 is based on the measurement-error variance. 

There is an essentially nonlinear relation between the temperature and the unknown pa- 
rameters in an inverse thermal-conduction treatment; therefore, the 0k(X, r), k = i, m and 
the elements in (2) together with ~ are dependent on the unknown parameter vector P, and only 
locally optimal planning is possible, where one solves (i) by means of a priori information 
on the unknown parameters [2]. 

Optimum planning can be used in thermophysics if two basic concepts can be demonstrated: 
i) the performance criterion is independent for the problem class, and 2) locally optimal plan- 
ning is possible subject to indefinite information on the unknown parameters. The main pur- 
pose of this paper is to give practical evidence for these concepts from computational exper- 
iments. 

The study relates to the temperature dependence of the conductivity for an insulating ma- 
\ 

terial. We consider oneqdimensional nonstationary conduction subject to boundary conditions 
of the first kind. One has_~to determine X(T) from 

C(T) 0r0~ - oxO (~( r )  Or , 0 < x < b ,  0 < ~ ,  (3) 

T(x, 0 ) =  To(x), O ~ x ~ b ,  (4) 

T (0, ~) = g~ (T), (5) 

T (b, "0 = g~ (T), (6) 
exp 

T (Xi, "r fi(x), i=  1, N, O < X I < X ~ < . . . < X N < b ,  (7) 

where C(T), To(x), g~(T), ga (T) are given functions. 

We first consider temperature-measurement planning, where the input data are: specimen 
thickness b taken as b = 0.03 m, initial temperature distribution constant, To(x) =300 K, and 
experiment duration ~m = 700 sec. The thermophysical characteristics in (3) were taken as 
close to the [3] ones, being taken as known and specified by: 

C (T)= 1.0-10s+2.90T--0.31T z + 0,11.10-aT a, %(T)= 0,39-10-~+0,17-10-aT. (8) 

The bounda ry  c o n d i t i o n s  a r e  r e p r e s e n t e d  i n  F i g .  1 (T -- T/Tmax, T -- X]Tm). 

The unknown f u n c t i o n  i s  p a r a m e t e r i z e d  as  

~, (T) = ~ ~,,~ (T), (9) 
h = l  
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Fig. i. Temperature variation at specimen boundaries. 

where ~(T), k=l, m is a basis-function system, for which we used cubic B splines [4]. To 
represent (9), we specified natural boundary conditions: l"(Tmi n) = l"(Tma x) = 0. The mini- 
mum temperature Tmi n and the maximum Tma x were determined from the given boundary conditions. 
The degree of the splint was chosen to provide continuity in the coefficients in the sensi- 
tivity-function equation. The formulas defining the sensitivity functions were derived by 
differentiating (4)-(7) m times with respect to lk, k = i, m, and are 

OOh 0 I/~(T) OOh O~ Og OOk 0)~ 02T 
C (T) o--7 a~ ~ + a~ ax. a ~ '  a~ axe. 

(10) 
] aT) dq% + OZs (' OV) ~ OC or Oh+ Oz---~T % ( T ) + ( - ~ x  dr ' 

~ Ox ] aT a ,  ax z ~, 

O < x < b ,  O<-c~-g~ ,  k =  1, m; 

Ok(x, o)=o, O~x<~O, ( n )  

Oh(O, "0 = O, (12) 

Oh (b, ,) = O. (13) 

We solved (3)-(6) and (10)-(13) numerically by means of a monotone inexplicit approxima- 
tion scheme [5]. 

To solve (i), the permissible-planned set E was formulated from a study on the unambigu- 
ous solubility of this inverse treatment in the form of uniqueness theorems for a given type 
of boundary condition (see for example [6]), where it was represented as 

E =  {(N, X ) : N ~ N m ~ D ,  ' O<X,;~b,  i=  1, N}. 
The solution to (2) was constructed Sequentially; beginning with Nmi n = i, we increased the 
number of sensors by one, and for each given N we determined the optimum measurement-polnt co- 
ordinate vector X by a scanning method based on a spatial finlte-difference set [7, 8]. 

Then the [9] method was applied to the inverse problem, which was considered in a turn- 
ing-point formulation; the target functional was the mean-square discrepancy: 

N ~m 

I = X .[ [T(X,, "0-- [, ('t')] z d'~. (14) 
i = 1  0 

We min imized  (14) by t h e  c o n j u g a t e - g r a d i e n t  method;  t h e  a p p r o x i m a t i o n s  f o r  t h e  unknown 
parameters were: 

~(1) t'(l}.a (t) g(kt--*) ~(ff+l)=~{~t)--}-cz(t)g (l), k----l, m, 1 = 0 , 1 ,  2 . . . . .  gk = - - - h  T e e  
m ?n 

[8 0 = O, [~,0 = X (l•,t) __ l;fl-,))ii,1, / X (l '"-")a" 
h = l  k = l  

The expression for the components of the gradient vector for the target functional was de- 
rived by means of conjugate boundary-value treatment [i0] : 

N+t Xi i'~ [_~s%(T) ( OT ]2 d~h(T) ]dvdx' k = l ,  m,  I~ = iX 1 ~_~ ~'i (x, "r OZT + \--~-x ' dT 
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TABLE i. Maximal Values for the Planning 
and Optimal Sensor Coordinates 

Criterion 

'~'max X~, m x~, m x~, m 

0,01275 
0,00750 
0,00600 

0,02400 
0,02250 

0,5559.10 ~7 
0,1362.1040 
0.1800.104o O, 02400 

where Xi, i = i, N are the sensor coordinates, Xo = 0, XN+ I = b; vi(x, T), i = i, N + 1 be- 
ing the conjugate variable. 

A linear estimate was used for the descent depth ~(1) in iteration ~ from the boundary- 
value solution for the temperature variation O(x, T); the formula for ~(1) was 

N ~m 

~ ( l ) =  i = i  0 
N Tm 

f = 1 0  
The f o r m u l a s  d e f i n i n g  t he  b o u n d a r y - v a l u e  t r e a t m e n t s  f o r  ~ i ( x ,  T) ,  i = 1,  N + 1 and O(x,~) have  
been  g i v e n  i n  [ 9 ] .  

We examined t he  r a t i o n a l  measurement  scheme f o r  ( 3 ) - ( 7 )  on t h e  a s s u m p t i o n  t h a t  t he  mea-  
s u r e m e n t s  on the nonstationary temperatures fi(T), i = i, N, are made without error; in that 
idealized situation, the iteration may be halted from the condition 

aDs [~(0 __ i(z-1 ))/~(/)1 < s, 

where s > 0 is a small quantity. 

The boundary-value treatments for T(x, T), 9(x, T) and @(x, ~) were handled numerically; 
the effective experimental values for the temperatures at various distances from the heated 
surface were derived by solving the (3)-(6) heating problem. The calculated temperatures 
fi(T), i = I, N at points with given coordinates Xi, i = i, N were then used as input data 
for the inverse derivation of the unknown X(T); the initial approximation was X~ = 0.02 W/ 
(m.K), k = i, m. 

This procedure enables us to compare directly the known behavior of the conductivity with 
those recovered from the inverse treatment with various plans; the results were examined from 
the error in relation to the measurement plan and used to evaluate the viability and perform- 
ance in choosing locally optimal plans. 

Table i gives the results on the optimum plan; Fig. 2 illustrates the sensitivity analy- 
sis. The a priori information on X(T) was provided by (8). 

For N = i, there is a fairly narrow range for the optimum sensor position that provides 
maximum inverse accuracy; this was completely confirmed by the inverse treatment. As the num- 
ber of sensors is increased successively by one, initially (N = 2) there is a sharp increase 
in the optimum value for the planning criterion and there are substantial changes in the op- 
timum sensor coordinates. The region for locating the sensors expands considerably. Further 
increase in the number of sensors gives little increase in the criterion, so any further in- 
crease in that number is undesirable from the accuracy viewpoint. This is also confirmed by 
the inverse treatment (Fig. 2). 

We also examined how the planning results were affected by the number of spline-approxi- 
marion parameters and by conductivity variations. 

Figure 3 shows how the planning criterion varies with the coordinate for one sensor with 
m = 4-7; as the number of parameters increases, ~max increases by several orders of magnitude~ 
while the optimum sensor coordinate varies only slightly for m = 5-7. 

These results confirm that optimum planning is viable with this criterion; if the exact 
values are specified as a priori information on the unknown conductivity, the locally Optimal 
plan becomes exact, as is evident from the comparison of the plan and the inverse treatment. 

Figure 4 shows the planning criterion as a function of sensor coordinate for various con- 
ductlvities; the initial X(T) was perturbed via X(T) = a x X(T), and it was found that altering 
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Fig.  2. Dependence of the planning c r i t e r i o n  and maximal r e l a t i v e  
e r ro r  in  recover ing the c o n d u c t i v i t y  on the sensor p o s i t i o n ;  fo r  
4: i) N = i; 2) N = 2, 0 < X, < 0.03, X2 = X*; 3) N = 2, X, -- X*, 
0 < X2 < 0.03; 4) N = 3, 0 < X, < 0.03, X2 = X*, X, = X*; 5) N=3, 
X, = X*, 0 < X2 < 0.03, X, = X'a; 6) N = 3, X, = X**, X= = X*, 0 < 
Xa < 0.03; for I&%maxl. 7) N = i; 8) N = 2, X~ = X**, 0 < X2 < 
0.03; 9) N = 3, X, = X~, 0 < X2 < 0.03;-X, = X*a. 
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Fig. 3. Dependence of planning criterion on sensor 
position for various numbers of parameters: i) m = 
4; 2) 5; 3) 6; 4) 7. 

%(T) by a factor three altered ~ by several orders of magnitude, while the optimum coordinate was 
only slightly altered. This shows that locally optimal planning can be used with little a priori 
information on the unknown characteristics. 

The planning results agree well with the parametric analysis of the inverse accuracyalso 
under other conditions of heat transfer at the boundaries and initial approximations for the 
functions. 

A similar analysis can be based on the errors in the measurements if one simulates the 
error laws, which is the subject of a separate research. 

NOTATION 

T, temperature; x, coordinate; T, time; Tm, duration; b, plate thickness; To(x), initial 
temperature distribution; C(T), bulk specific heat; X(T), thermal conductivity; g~(T), g2(T), 
boundar Z functions; I, functional; N, number of sensors; fi(T), i = i, N, temperature measure- 
ments; X = {Xi}, i = i, N, sensor coordinate vector; X~, i = I, N, optimal sensor coordinates; 
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Fig. 4. Dependence of planning criterion on sensor position 
for various modes~of variation in the a priori behavior of 
the conductivity I(T) = a x I(T): i) a = 1/3; 2) 2/3; 3) i; 
4) 3/2; 5) 3. 

~, measurement plan; Ik, k = i, m, approximation coefficients; %.k=!, m, basis functions; ~, 
conjugate variable; e, temperature increment; F($), normalized Fisher information matrix;i ~, 
Fisher matrix element; 0k(X,T) , k = i, m, sensitivity functions; ~i(T), i = i, N, measurement 
performance functions; 4, optimality criterion; IAlmaxl , maximum relative error in recovering 
conductivity. Superscripts and subscripts: l, iteration number; i, measurement point num- 
ber; j and k, parameter numbers. 
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